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SUMMARY 

The discontinuity of a finite-element pressure field that is sometimes present in the neighbourhood of 
the pressure-specification-point is shown to arise either from round-off, or from mistakes in modelling. 
The implications of this are considered. In particular it restricts grid refinement near the pressure- 
specification-point. The analysis can be extended to finite-difference calculations, and to other fields 
governed by equations similar to Poisson’s equation. 
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1. INTRODUCTION 

It is well known that it is difficult and costly to calculate numerically pressure fields in 
incompressible materials. The problems are caused by the infinite range and infinite speed of 
propagation of the pressure field in such materials. Thus, for example, iterative methods are 
slow to converge because they correspond to finite propagation speeds, and hence direct 
solvers such as fast Poisson solvers or Gaussian elimination are often used. 

We report here on yet another consequence of the infinite range of the pressure, namely 
the sensitivity of the pressure field to the effects of round-off or mistakes in modelling. This 
manifests itself in the following manner. In incompressible materials the pressure field is only 
determined by the governing equations up to an additive constant, which may be fixed by 
specifying the value of the pressure at one point. If the location of this point is changed then, 
of course, the analytic pressure field is merely shifted by a constant. This is not true for the 
numerically determined pressure field. It is true that, away from the neighbourhood of the 
pressure-specification points, the change is simply a constant shift, but in the neighbourhood 
of the pressure-specification point the change is more complex. We shall show in this paper 
that nearly all of the round-off accumulates at the pressure specification point, perturbing the 
fields at that point. 

A specific example may help to make this clearer. We first discovered the phenomenon in 
finite element modelling of the ‘driven cavity’ problem,’ of incompressible laminar flow in a 
square cavity, across the top of which a lid slides at constant speed (see Figure 1). If the 
pressure-specification point was at the centre of the cavity then the pressure field was 
effectively smooth everywhere (except in the neighbourhood of the two corners under the 
lid, where there are of course logarithmic singularities in pressure), but if the pressure- 
specification point was at one of the lower two corners, say, then the pressure field was such 
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Figure 1. The ‘driven-cavity’ problem. The lid slides across the top of the cavity with constant velocity of 1.0 

that there existed a constant which, when added to the pressure field, gave the same values 
as before everywhere except at the pressure-specification point where there was a sudden 
jump. Further, if the finite-element mesh in the neighbourhood of the pressure-specification 
point was refined then the magnitude of the jump increased, contrary to one’s natural 
expectation that grid refinement improves the accuracy of numerical solutions. 

In this paper we show that the phenomenon is a result of round-off, which effectively 
introduces into the finite-element model a flow imbalance that leaves the model through the 
pressure-specification point, thus perturbing there the pressure field and to a lesser extent 
the velocity field. 

It is also possible to  introduce such a flow imbalance by making a mistake in modelling a 
problem, and then the flow imbalance again effectively leaves the model through the 
pressure-specification point, perturbing the pressure and velocity fields there. 

A similar phenomenon occurs for finite-element pressure fields in other problems. It 
occurs whenever the governing partial differential equations only determine the pressure up 
to an additive constant, as for example if the pressure is determined by Poisson’s equation. 
The same effect can also occur in finite-difference calculations.* 

It must be stressed that we are not saying that the finite-element pressure problem is 
ill-posed or badly conditioned, but rather that the finite-element pressure field may be 
inaccurate in the neighbourhood of the pressure-specification point. 

2. THE FINITE ELEMENT EQUATIONS 

The Navier-Stokes equations describing incompressible laminar fluid flow in two dimensions 
are in non-dimensional form 

au au ap 1 

av au ap 1 

u-+v-+---V2U=0 

u-+v-+---V2v=0 

ax ay ax Re 

ax ay ay Re 
a u  av -+-=o 
ax a y  
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where u, v are velocity components in the x, y directions, respectively, p is pressure and Re 
is Reynolds number. In any given problem appropriate boundary conditions have to be 
specified. For example, in the driven cavity problem the boundary conditions are 

u = 1, for x = O  
u = v = o ,  for y = O  
u = u = o ,  for x = l  
u = l ,  v=O, for y = l  

where the cavity is 

O S X S l ,  O S y S l  

in non-dimensional units. Note that since only gradients of pressure appear in the equations 
then the pressure is only determined up to an additive constant. This may be fixed by 
specifying the pressure value at one point. 

The finite-element method for (1) is described in detail by many authors, and so we simply 
present here the standard form of the finite-element equations. It is of course necessary to 
use ‘mixed interpolation’ to ensure that the finite-element pressure field is uniquely deter- 
mined.3 

The finite-element equations are 

where {&} is the set of piecewise biquadratic polynomials used to interpolate the finite- 
element velocity fields ii, 6, and {+i} is the set of piecewise bilinear polynomials used to 
interpolate the finite-element pressure field fi, and 6 is the finite element approximation to 
0. 

One way of implementing Dirichlet boundary conditions is simply to discard the finite- 
element equations corresponding to the boundary nodes, and use instead the Dirichlet 
boundary condition at the nodes. This ensures that there are still the same number of 
equations as unknowns. 

Thus at the pressure-specification-point Q the finite-element continuity equation corres- 
ponding to node Q is replaced by an equation of the form 

pa = value 

which defines the reference level for the pressure. 

3. THE PRESSURE-SPECIFICATION POINT 

Although at first sight the pressure-specification point Q has been singled out for special 
treatment as regards the continuity equation, it can be shown that the finite-element 
continuity equation for node Q is implied by the other finite-element continuity equations. 
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We have 
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Now the space of finite-element test functions contains 1, usually in the form 

i 

(The modifications to the argument below if 1 is some different linear combination of the 4i 
are trivial). Thus summing (4) over i f  Q and using (5 )  we have 

and so 

= O  

provided that 

This last condition is just the requirement that there is no net influx or  outflux of material 
into the region A. Thus, in a problem with Dirichlet boundary conditions on velocity on all 
the boundaries, the finite-element continuity equation at node Q is implied by the other 
finite-element continuity equations, provided that the boundary conditions are chosen 
carefully so that material is conserved in the sense that $ u . n = 0. This requires a little more 
care than at first sight appears necessary, since it is a requirement upon the finite-element 
field u and not upon u. 

For example, consider the driven cavity problem. Although $ u . n is zero because u . n is 
zero on all the walls of the cavity, u . n is not necessarily zero on all the walls and so $ u . n is 
only zeio if care is taken. In one possible formulation of the boundary conditions ti on the 
left-hand and right-hand edges is 0 at all the nodes except the ones on the lid, where it is 1. 
This then implies that ti is non-zero on the left-hand and right-hand edges, on the elements 
immediately below the lid, since it is a low order polynomial fit to  the nodal values. Thus 
u . n is non-zero on these two elements and zero everywhere else on the boundary, and so 

Now the above proof that the continuity equation for node Q is implied by the remaining 
continuity equations assumed exact arithmetic, but of course computer calculations use 
finite-precision arithmetic. Perhaps the easiest way to understand the effect of this is as 
follows. Finite precision arithmetic leads to nodal values of the fields u:, p’ differing slightly 
from ui, fi the solutions in exact arithmetic of the finite element equations. Thus writing 

u . n is only zero if the sizes of the two elements in question are the same. 
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we obtain 

say, where we have used exact arithmetic in the evaluation of the integral in (8), (and inexact 
values u’ of course). The magnitude of qi depends upon the program in use. For example, in 
the program that we were using when we first discovered the effect, all calculations were 
performed in IBM single precision (with approximately 7 significant figures) except the 
solution of the linear equations which was done in IBM double precision (with approximately 
16 significant figures) by the frontal method of Gaussian elimination. In this case qi is 
dominated by the round-off in the calculation of the matrix and residual for the linear 
equations, and so is of order of machine precision times a typical value for W a x  or avlay, 
times a small number (possibly as large as 5.0) determined by the number of arithmetic 
operations required in the calculation of the matrix and residual. On the other hand, if all 
calculations had been carried out in single or double precision, then qi would be dominated 
by the round-off growth in the solution of the linear equations, and could be considerably 
larger, particularly if the problem was poorly conditioned. Note that qi must not be confused 
with the value calculated in the computer for the integral in (8), which will differ from qi, 
since additional round-off will occur in its calculation, although it will be of the same order of 
magnitude as qi. Hence, following the same line of argument as before 

and so 

- u’.n- 1 qi 
-$fl i f Q  

Now, in a problem with Dirichlet boundary conditions on the velocity on all the boundary we 
have that u’ is prescribed on the boundary and is such that 

provided of course that there are no mistakes in modelling. Thus 

say. One way of interpreting this result is to say that effectively all the round-off in the 
continuity equation is accumulated at the pressure-specification point. 

The magnitude of E can be estimated in the case discussed above when all calculations 
except the solutions of the linear equations are carried out in IBM single precision. It is not 
unreasonable to postulate that each of the qis can be treated as independent random 
variables, and so using the central limit theorem the magnitude of E is expected to be 

x (a small number) ax ’ ay  
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where N is the number of nodes in the grids and E is machine precision. If the grid is 
uniform with spacing h then this can be rewritten as 

typical value of - 

In other cases the qi may be correlated and an estimate is harder to obtain. 
It is reasonable to suggest that the effect of E is to  perturb the velocity field in the 

neighbourhood of Q by a sourcelsink of fluid. Thus, using (10) and (4), and approximating 
the integrals, the velocity fields at Q will be perturbed by Au (= u ’ - 6 )  and Av (= v’-6) 
such that 

where A, is the area of elements including node Q, and hQ is the mesh spacing near Q. (The 
round-off in the computer calculation of u& vh will be of order qi and so considerably less 
than E and can be safely ignored in this estimate). Then the pressure at Q will be perturbed 
by Ap where Ap = p’ - fl, such that 

(14) 
1 (Au or Av) 1 

hQ h, hQ Re 
A q 4 - A o -  - 

using the velocity equations and neglecting the non-linear term for the moment. Thus 

1 Au 
or -- 

1 E  
Re hQ 

That is the magnitude of the pressure jump is directly proportional to the flow imbalance, 
and inversely proportional to the area of the elements containing the pressure-specification 
point. It is easy to see that including the effect of the non-linear terms from the velocity 
equation merely changes the details of the argument above and not the magnitude of Ap. 

If the flow imbalance E is due to a modelling error, rather than to the accumulation of 
round-off, then a similar argument can be stated exactly as before from equation (13) 
onwards. 

There are several implications of the above. In the case when E is due to round-off, then if 
the grid is locally refined near Q this should only change the qi corresponding to nodes near 
Q, and so E should remain more or  less the same. Equally if E is due to a modelling error 
then local refinement near Q will in general leave E unchanged. Then in both cases Ap will 
increase in direct proportion as A, increases. Thus local refinement near the pressure 
specification point is not a good idea. 

In either case if the grid is uniform and the pressure-specification point is in the middle of 
the flow then there will be more elements adjacent to it and A, will be larger than if the 
pressure-specification point was on an edge or a corner, and so Ap will be smaller. Also the 
velocity perturbation will be smaller relative to the true flow field. 

In the case when E is due to round-off then if Ap is compared on a sequence of uniform 
grids of different mesh spacing h then 

~ h ~ ~ ( t y p i c a 1  value of x (small number) Ap--Rehz= 
from (12) and (151, where the last equality holds only in the case when all calculations except 
matrix solutions are carried out in IBM single precision. Note that there will of course not be 
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exact proportionality between Ap and h-3 because of the random nature of round-off. The 
magnitude of the effect is proportional to machine precision, and so in IBM single precision 
(with approximately 7 significant figures) then the effect can become noticeable at quite low 
refinements, but in double precision, the effect should usually be quite negligible unless the 
pressure-specification point is in an extremely refined region, or there are strongly varying 
material properties. 

4. NUMERICAL EXAMPLES 

In order to test the theory presented above a large number of numerical calculations were 
made. Three problems were used, namely the driven cavity problem, Poiseuille flow and 
Couette flow, all at various Reynolds numbers. In all cases the results were in excellent 
agreement with the theory. We present here only a few of the results to save paper. 

The first problem considered was the driven cavity. The finite-element equations were 
solved in double precision, but all other calculations were performed in IBM single precision, 
which means that numbers have about 7 significant digits. A variety of finite-element grids 
were used, both uniform grids of the form shown in Figure 2 with various grid spacings, and 
also such grids with the lower left corner refined as shown in Figure 3. The elements used 
were the six-node quadratic triangle for velocities, and the three-node linear triangle for 
pressure. 

In Tables I and I1 we present the calculated pressure fields at Reynolds number 1.0 on a 
17 x 17 uniform grid, with the pressure-specification point at the centre of the cavity and the 
lower left corner, respectively. The reference pressure value was taken to be 0.0 at the 
pressure specification point. (We use the notation that an N X N grid is one with N nodes in 
each direction). In Table I11 we present the difference between the two solutions. It can be 
seen that, everywhere except at the pressure-specification points, there is a constant 
difference of 0-32, approximately, and that the magnitude of the pressure discontinuity Ap is 
approximately 1-8 x lop3 when the pressure specification point is at the lower left corner. In 
a similar manner the pressure discontinuity with the pressure-specification point at the lower 
left corner was obtained for 9 x 9, 13 x 13 and 21 x 21 grids. The results are plotted in Figure 
4, against the inverse of the mesh spacing, on a fog-log plot. A line of slope 3.0 is also drawn 

Figure 2. A 9 x 9 uniform finite-element grid of the sort used for the numerical calculations of this paper 
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l b )  

Figure 3. Two types of corner refinement used in the finite-element grids 

Table I. Pressure values for the driven cavity problem on a 17 x 17 grid with the pressure-specification 
point at the centre of the grid 

-38.070 
-15.011 
-5.2009 
-1.4368 
-0.79758 
-0.00091011 
-0.067773 
-0.18001 
-0.32179 

-2.7006 
-9.0836 
-5.1325 
-2.5381 
- 1.1102 
-0.57863 
-0.28993 
-0.33594 
-0.44578 

-4.3529 -0.15627 
-3.6213 -1.7055 
-3.1837 - 1.5703 
-2.0872 -1.0386 
-1.1080 -0.65878 
-0.57902 -0.36171 
-0.38735 -0.22327 
-0.34708 -0.23091 
-0.53550 -0.36882 

-0.031841 
-0.045934 
-0.055403 
-0.027490 

0.0 
0.017288 
0.023553 
0.025780 
0.025579 

0.14362 
1.6281 
1.4900 
1.0006 
0.67005 
0-39911 
0.27255 
0.28272 
0.42078 

4.4146 
3.6398 
3.1684 
2.0959 
1.1385 
062368 
0.43894 
0.39935 
0.58827 

2.8829 
9.2313 
5.1932 
2.5786 
1.1480 
0.62627 
0.33991 
0.38817 
0.49791 

38.551 
15229 
5.2739 
1.4565 
0.83418 
0,042002 
0.11755 
0.23211 
0.37340 

Table 11. Pressure values for the driven cavity problem on a 17 X 17 grid with the pressure-specification 
point at the lower left corner 

-37.750 -2.3806 -4.0329 0.16373 0.28816 0'46362 4'7346 3.2029 38.871 
-14.691 -8.7636 -3.3013 -1.3855 0.27407 1.9481 3.9598 9.5513 15.549 
-4.8809 -4.8124 -2.8637 -1.2503 0.26460 1.8101 3.4884 5.5132 5.5939 
- 1.1168 -2.2181 -1.7672 -0.71855 0.29254 1'3206 2.4159 2.8986 1.7765 
-0.47757 -0.79024 -0.78797 -0.33874 0.31991 0.99008 1.4585 1.4680 1.1542 

0.31904 -0.25863 -0.25902 -0.041693 0.33732 0.71912 0.94368 0.94628 0.36201 
0.25236 0.030061 -0.067329 0.096740 0.34355 0.59255 0.75895 0.65991 0.43755 
0.13951 -0.015953 -0.027083 0.089093 0.34578 0'60273 0.71935 0'70817 0.55211 
0.0 -0.12626 -0.21536 -0.048876 0'34559 0'74078 0.90827 0.81791 0.69341 
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Table 111. Difference between Table I and Table I1 

0.320 0.3200 
0.320 0.3200 
0.3200 0.3201 
0.3200 0.3200 
0.32001 0.3200 
0.31995 0.32000 
0.32013 0.32999 
0.31952 0.32001 
0.32179 0.31952 

0.3200 
0.3200 
0.3200 
0.3200 
0-3200 
0.32000 
0.32002 
0-32000 
0.32014 

0.32000 
0.3200 
0-3200 
0.3201 
0.32004 
0.32002 
0.32001 
0-32000 
0.3 1994 

0.32000 
0.32000 
0.32000 
0.32003 
0.3 199 1 
0.32003 
0.31997 
0-32000 
0-32001 

0.32000 
0.3200 
0.3201 
0.3200 
0.32003 
0-32001 
0.32000 
0-32001 
0.32000 

0.3200 
0.3200 
0.3200 
0.3200 
0.3200 
0.32000 
0,32001 
0-32000 
0.32000 

0.3200 
0-3200 
0.3200 
0.3200 
0-3200 
0.3200 1 
0.32000 
0.32000 
0.32000 

0-320 
0-320 
0.3200 
0-3200 
0-3200 
0.32001 
0-32000 
0-32000 
0.32001 

to indicate the expected behaviour. The agreement is excellent bearing in mind the (pseudo-) 
random nature of round-off. 

Similarly, the pressure discontinuity with the pressure specification point in the lower left 
corner was obtained for a number of 21 X 21 grids with varying refinements in the corner. 
The results are plotted in Figure 5 against the inverse of the local mesh spacing, using a 
log-log plot. The slope of the line joining the points is 2-26 in good agreement with the 
expected value of 2.0. Note that the magnitude of the pressure discontinuity is 2.654 when 
the local mesh spacing is reduced by a factor of 16 compared to the uniform grid. This is of 
the same order of magnitude as the pressure field values over most of the cavity, so that the 
perturbation is not insignificant. 

We also obtained good agreement with the predicted behaviour of the pressure discon- 
tinuity in the cases of Couette flow and Poiseuille flow. We report only a few of the results 
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Figure 4. A log-log of the pressure discontinuity for the ‘driven cavity’ problem with the pressure-specification- 
point in the lower left corner, versus the inverse of the mesh spacing for various uniform grids. The line of slope 3.0 

indicates the expected behaviour of the plot 
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Figure 5. A log-log plot of the pressure discontinuity for the 'driven cavity' problem, with the pressure-specification 
point in the lower left corner, versus the inverse of the local mesh spacing for various refined 21 X 21 grids 

here. The problem of Couette flow is that of flow in a straight channel with one wall fixed 
and one wall sliding at a constant velocity (see Figure 6). The boundary conditions are 

u = y ,  v=O, for x = O  
u = y ,  v = O ,  for x = l  
u = O ,  v = O ,  for y = O  
u=l, v = O ,  for y = l  

in non-dimensional units with the orientation of axes shown in Figure 6. This problem has 
the analytic solution 

u = y, v = 0, p =constant. 
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'i 
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I 

Figure 6.  Couette flow. The upper channel wall moves with constant velocity 1.0 

If a pressure discontinuity occurs, it is very easy to see in this problem because of the form of 
this solution. The pressure discontinuity behaved exactly as predicted. For example, on a 
21 x 21 grid with Re = 1, if the pressure-specification point was at the centre of the right 
hand edge, then the pressure discontinuity was 1-08 x whereas, if the pressure- 
specification point was at the bottom left-hand corner then the pressure discontinuity was 
2 . 7 1 ~ 1 0 - ~ ,  in agreement with the remarks made at the end of Section 3. One slightly 
amusing test that we carried out was to perturb the co-ordinates of the nodes by a (pseudo-) 
random perturbation on a scale of times the grid scale. This changed the pressure 
discontinuity from 1.08 x lop3 to 1.68 x lop3 with the pressure specification point at the 
centre of the right hand edge. This is strong confirmation that round-off is the source of the 
trouble. 

One last very sensitive test of the theory is simply to compare the same calculations in 
double and single precision. The magnitude of the pressure discontinuity should be smaller 
by a factor of about lo9, when the calculation is performed in double precision on an IBM 
computer. This is exactly what was observed. The magnitude of the pressure discontinuity for 
the problem of Couette flow at Re = 1, on a 21 X 21 grid with the pressure specification point 
at the centre of the right hand edge is 1.08 x when calculated in single precision, and 
1.26 x when calculated in double precision. 

5 .  CONCLUSIONS AND REMARKS 

The theory presented here provides a reasonable explanation of the pressure discontinuity 
sometimes seen near the pressure-specification point. The theory has been shown to be in 
excellent agreement with numerical experiments. 

The basis of the argument is of course just a numerical analogue of the consistency 
condition for Neumann problems. 

There are several implications of the paper. Firstly, it is perhaps desirable to perform all 
calculations in double precision. Secondly one should in any case avoid placing the pressure- 
specification point in regions of high refinement. Thirdly and perhaps most importantly, if 
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there is a significant discontinuity at the pressure-specification point after taking the above 
two remarks into consideration, then there is almost certainly a modelling error. This can be 
a very useful debugging aid. 

It is easy to see that very similar results hold if the pressure is determined by the simpler 
Poisson-like equation 

where a and b are given functions of position. The modifications to the argument of Section 
3 in order to deal with this type of pressure equation are simple. A similar argument can also 
be made for any field, whose governing partial differential equations admit arbitrary additive 
shifts in the solution that need to be fixed by a boundary condition. 

The argument is not restricted to finite-element discretizations. The same sort of argument 
can be made for finite-difference discretizations which are in conservative form. 
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